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Exposure to childhood trauma (CT) increases the risk for psychosis
and affects the development of brain structures, possibly through
oxidative stress. As oxidative stress is also linked to psychosis, it may
interact with CT, leading to a more severe clinical phenotype. In 133
patients with early psychosis (EPP), we explored the relationships
between CT and hippocampal, amygdala, and intracranial volume
(ICV); blood antioxidant defenses [glutathione peroxidase (GPx) and
thioredoxin/peroxiredoxin (Trx/Prx)]; psychopathological results;
and neuropsychological results. Nonadjusted hippocampal volume
correlated negatively with GPx activity in patients with CT, but not in
patients without CT. In patients with CT with high GPx activity (high-
GPx+CT), hippocampal volumewas decreased comparedwith that in
patients with low-GPx+CT and patients without CT, who had similar
hippocampal volumes. Patients with high-GPx+CT had more severe
positive and disorganized symptoms than other patients. Interest-
ingly, Trx and oxidized Prx levels correlated negatively with GPx only
in patients with low-GPx+CT. Moreover, patients with low-GPx+CT
performed better than other patients on cognitive tasks. Discrimi-
nant analysis combining redoxmarkers, hippocampal volume, clinical
scores, and cognitive scores allowed for stratification of the patients
into subgroups. In conclusion, traumatized EPP with high peripheral
oxidation status (high-GPx activity) had smaller hippocampal vol-
umes and more severe symptoms, while those with lower oxidation
status (low-GPx activity) showed better cognition and regulation of
GPx and Trx/Prx systems. These results suggest that maintained reg-
ulation of various antioxidant systems allowed for compensatory
mechanisms preventing long-term neuroanatomical and clinical im-
pacts. The redox marker profile may thus represent important bio-
markers for defining treatment strategies in patients with psychosis.

psychosis | early psychosis | childhood trauma | oxidative stress |
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Exposure to childhood trauma (CT) in the form of child abuse
and/or neglect is a major public health and social welfare

problem worldwide, affecting 4–16% of children every year (1).
CT increases vulnerability to a broad number of medical and
major psychiatric conditions (2), including psychosis, where CT is
now recognized as a major risk factor (3). Exposure to CT im-
pacts the development of brain structures involved in psychosis,
such as the hippocampus and amygdala (2, 4), and is associated
with a poorer clinical profile in psychotic patients than in those
without CT exposure (5). While some advances have been made
in the understanding of the biological substrates underlying the
link between CT and psychosis, the molecular mechanisms that
mediate this diathesis remain unclear.
Genetic and developmental environment risks converging on

oxidative stress as one central hub formed by neuroinflammation
(6), NMDA receptor hypofunction (7), dopamine dysfunction, and redox
dysregulation (8, 9) stand out as a potential pathophysiological

mechanism of psychosis. This hub may play a mediating role in
the link between the exposure to environmental insults and the
later development of psychosis (6, 7, 10). In patients with
schizophrenia, marks of oxidative stress and abnormal levels of
antioxidant defenses were reported in peripheral samples as well
as in patients’ brains (6–8, 11). In animal models, psychosocial
insults at sensitive stages of brain development also lead to ox-
idative stress (6).
Redox processes form an adaptive system to respond to the

environment that is required to maintain health in a changing
environment (12). Antioxidant enzymes detoxify reactive oxygen
species (ROS) into less reactive molecules, thus participating in
redox homeostasis: Glutathione peroxidase (GPx) and peroxir-
edoxin (Prx) are two families of enzymes that catalyze the re-
duction of peroxides using the reducing power of glutathione
(GSH) and thioredoxin (Trx), respectively. Oxidized GSH (GSSG)
and oxidized Trx are, in turn, reduced by glutathione reductase
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(GR) and thioredoxin reductase (SI Appendix, Fig. S1). GSH, the
most abundant endogenous nonprotein antioxidant, also scavenges
ROS directly. GSH concentrations are decreased in blood (8, 13),
cerebrospinal fluid (8, 14), and postmortem brain tissues (8, 15) of
psychotic patients compared with those in healthy controls. In
mice, reductions in GSH levels lead to neural connectivity im-
pairments (16), and additional oxidative challenges during brain
development impair neural synchronization (17), mimicking the
deficits observed in schizophrenia. The Trx/Prx system is less well
characterized than the GSH system in psychotic patients. A few
studies reported an increase in plasma Trx levels in psychotic pa-
tients compared with those in healthy controls (18–20), which
might be more pronounced in the acute phase of the illness (18, 20)
and milder or absent in the chronic stage of the illness (18, 21), and
one study reported an increase in brain Prx6 levels (22).
We previously reported that high blood GPx activity, a pe-

ripheral marker reflecting low brain GSH levels (23), is associ-
ated with reduced hippocampal volume in patients with early
psychosis (EPP) (24), without taking into account a possible role
of trauma exposure in such an association. Redox dysregulation,
detected by high-GPx activity and reflecting high oxidation sta-
tus, may underlie the decrease in hippocampal volume observed
in traumatized patients (25).
The aim of the present study is to explore the relation between

exposure to CT and the redox system in EPP. Toward this ob-
jective, we recruited EPP and collected brain imaging data (n =
64) as well as concomitant blood samples (n = 118) to quantify
markers of GSH and Trx/Prx antioxidant systems.

Results
Demographics. Among 141 EPP recruited, eight were excluded
for the following reasons: age at exposure to trauma was not
available (n = 1), or first exposure to trauma occurred after psy-
chosis onset (n = 3) or after the age of 16 y (n = 4). Analyses were
carried out on the data of 133 patients (Fig. 1A), among whom 44
(33%) had a history of CT (EPP+CT). EPP+CT and EPP with no
trauma exposure (EPP−NT) had similar age, sex, and socioeco-
nomic status based on education of parents. The groups did not
differ in terms of functioning, illness duration, or diagnostic
breakdown (Fig. 1A and SI Appendix, Table S1). MRI scans were
available for a subgroup of 64 patients: 38 EPP−NT and 26 EPP+
CT matched for age and sex (Fig. 2A and SI Appendix, Table S2).

GPx/GR Antioxidant System and Hippocampal Volume. We tested
whether EPP−NT and EPP+CT displayed a different redox
status by assessing blood GPx and GR activities, two comple-
mentary enzymes of the GSH system (SI Appendix, Fig. S1).
Mean activity of GPx and GR and mean concentrations of GSH
were not different between the blood of EPP−NT and EPP+CT
(SI Appendix, Table S1). In EPP−NT, we observed a positive

correlation between GPx and GR activities (r = 0.50, P <
0.0001), suggesting a balanced oxidoreduction of the GSH sys-
tem. This correlation was absent in traumatized patients, sug-
gesting that trauma altered GSH homeostasis (Fig. 1B).
Compared with EPP−NT, EPP+CT had a smaller left hip-

pocampal volume (P = 0.046) but a similar amygdala volume
(P = 0.380; Fig. 2A).
To test whether redox dysregulation may explain this region-

specific decrease in volume in EPP+CT, we assessed the corre-
lation between GPx activity and hippocampal or amygdala vol-
ume in EPP−NT and EPP+CT (Fig. 2B). A negative correlation
between blood GPx activity and hippocampal volume was ob-
served in EPP+CT (r = −0.584, P = 0.0018) but not in EPP−NT.
The same pattern was observed for the right and left hippo-
campus or when the ratio of GPx/GR, instead of GPx activity
alone, was used (SI Appendix, Fig. S2). No correlation between
blood GPx activity and amygdala volume was observed in EPP+
CT or EPP−NT (Fig. 2B). Therefore, the association between
higher oxidation status and smaller hippocampal volume in
traumatized patients suggests that the interplay between CT and
redox systems is region-specific.
As the association between trauma and smaller hippocampal

volume was greater in patients with a high oxidative state (high-
GPx activity), we stratified patients into the following four groups:
(i) low-GPx EPP−NT, (ii) high-GPx EPP−NT, (iii) low-GPx
EPP+CT, and (iv) high-GPx EPP+CT (SI Appendix, Table S2).
The cutoff value between high- and low-GPx activity was chosen
based on a recent add-on clinical trial with an antioxidant showing that
GPx activity above 22.3 U/g of Hb predicted symptom improvement
(26). High-GPx EPP+CT displayed significantly smaller hippocampal
volumes than the three other groups (P = 0.020 and P = 0.035 for the
comparisons of the right and left hippocampus, respectively, between
high- and low-GPx EPP+CT; SI Appendix, Table S2). Interestingly,
the mean volume of the hippocampus was similar between low-GPx
EPP+CT and high- or low-GPx EPP−NT.We thus explored whether
low-GPx EPP+CT benefited from compensatory mechanisms of
other antioxidant systems, such as the Trx/Prx system (SI Appendix,
Fig. S1).

Stratification Based on Trauma and Antioxidant Profile.
Interaction between GPx/GR and Trx/Prx systems. We investigated the
relation between Trx levels and (i) GPx activity and (ii) oxidized
Prx levels in the four groups of patients. A negative correlation
between Trx levels and GPx activity was observed in low-GPx
EPP+CT (r = −0.725, P = 0.0015) but not in the other groups
(Fig. 3). Similarly, a negative correlation was also present be-
tween oxidized Prx levels and Trx levels only in low-GPx EPP+
CT (r = −0.78, P = 0.0064; SI Appendix, Fig. S3).
Altogether, these results show that the profile of peripheral

redox markers distinguished two groups of EPP+CT: (i) those

Fig. 1. Alteration of redox homeostasis in blood of traumatized patients. (A) Demographic and clinical characteristics of EPP without trauma experience (EPP−NT)
or with CT (EPP+CT). Data are presented as a percentage (n) (a) and as the mean (SD) (b). (B) Scatterplots illustrating the relation between GPx and GR activity
[units per gram of Hb (U/gHb)] measured in hemolysates from EPP−NT (Left) and EPP+CT (Right). Pearson’s correlation coefficient indicated a positive correlation
between GPx and GR activity in EPP−NT (r = 0.50, P < 0.0001). No correlation was detected in EPP+CT.
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with low-GPx activity, similar hippocampal volumes as EPP−NT,
and compensatory regulation of the Trx/Prx system and (ii) those
with high-GPx activity and smaller hippocampal volumes without
compensation by the Trx/Prx system (SI Appendix, Fig. S3).
Psychopathological and neurocognitive profiles. To challenge the val-
idity of blood GPx activity as a criterion for patient grouping, we
evaluated whether these biomarker-based patient subgroups pre-
sented different psychopathological and neurocognitive profiles.
We compared the four groups of patients in terms of symptom

severity and neurocognitive scores. Fig. 4A shows that high-GPx
EPP+CT had higher levels of positive symptoms than the other
three groups (P < 0.05) and higher levels of disorganized
symptoms than EPP−NT (P < 0.05). High-GPx EPP+CT also
showed higher levels of depressive and negative symptoms than
high-GPx EPP−NT (P < 0.05). No differences were found be-
tween groups in the excited dimension.
For neurocognition, low-GPx EPP+CT performed signifi-

cantly better than the other three groups in terms of speed of
processing, attention/vigilance, and verbal memory (P < 0.05;
Fig. 4B). They also had better scores in visual memory compared
with high-GPx EPP−NT (P = 0.02) and high-GPx EPP+CT (P =
0.03) and better working memory compared with high-GPx
EPP+CT (P = 0.046). No differences between groups were ob-
served for problem solving.
Discriminant analyses. Finally, we performed a classification anal-
ysis by linear discriminant analysis (LDA) to characterize and
predict the group membership of each patient.
Variables included in the LDAmodel were redox markers (GR,

Trx levels, and oxidized Prx), right and left hippocampal volume,
and psychopathological and neurocognitive scores (SI Appendix,
Table S3). The two first canonical axes explained 65% and 29% of
variability. The scatterplot diagram illustrates that the four groups
were significantly separated according to the four multivariate
ANOVA (MANOVA) tests (P < 0.0001; Fig. 5).
In conclusion, LDA showed that the combination of redox

markers and hippocampal volume efficiently distinguished two
profiles of EPP+CT. The addition of clinical data further im-
proved the classification, allowing for additional distinction be-
tween the profiles of the EPP−NT.

Discussion
This study investigated the relation between exposure to CT and
redox dysregulation in EPP, which are proposed to underlie
schizophrenia pathophysiology. Our results showed that two
distinct patient profiles can be defined on the basis of their redox

Fig. 2. Smaller hippocampus is associated with a more oxidized status in blood of traumatized patients. (A) Demographic and anatomical characteristics of
the subgroup of EPP with imaging scans. Data are presented as a percentage (n) (a) and as the mean (SD) (b). P < 0.05 is indicated in bold. (B) Scatterplots
illustrating the relation between blood GPx activity [units per gram of Hb (U/gHb)] and total hippocampal volume (Top) or total amygdala volume (Bottom) in
EPP−NT (Left) and EPP+CT (Right). Pearson’s correlation coefficient indicated a negative correlation between hippocampal volume and GPx activity in EPP+CT
(r = 0.58, P = 0.0018). No correlation was detected in EPP–NT or with the amygdala.

Fig. 3. Compensatory regulation of the Trx/Prx system in trauma patients
with low-GPx activity in blood. Scatterplots illustrate the relation between
active Trx levels [milligrams per gram of Hb (mg/gHb)] and blood GPx activity
[units per gram of Hb (U/gHb)] in EPP−NT (Left) and EPP+CT (Right) with
high blood GPx activity (Top) and with low blood GPx activity (Bottom). Trx
levels and GPx activities correlated negatively in low-GPx EPP+CT (r = −0.725,
P = 0.0015). No correlations were detected in the other groups.
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status. On the one hand, EPP+CT with high-GPx activity,
reflecting high oxidation status, displayed smaller hippocampal
volumes and higher levels of positive and disorganized symptoms
than EPP−NT. On the other hand, EPP+CT with low-GPx ac-
tivity scored better than the other EPP on the speed of pro-
cessing, verbal memory, and attention/vigilance neurocognitive
tests. Considering that low-GPx EPP+CT showed a homeostatic
regulation between the GPx/GR and Trx/Prx antioxidant sys-
tems, these results suggest that a preserved antioxidant balance
contributes to the prevention of some of the neuroanatomical
anomalies associated with trauma. A compensatory mechanism
underlying the preserved regulation between the Trx/Prx and
GPx/GR systems may occur in low-GPx EPP+CT, and therefore
may prevent the accumulation of oxidation products, such as
oxidized Prx. This compensatory mechanism was not present in
high-GPx EPP+CT, and thus may underlie the hippocampal al-
terations observed in this group. Future studies may explore
whether this mechanism also plays a role in nonpsychotic indi-
viduals exposed to trauma.
Some limitations should be considered. First, exposure to CT

was determined retrospectively, which can be particularly prob-
lematic for patients suffering from psychosis due to recall bias
(27). However, exposure to CT was assessed on the basis of

information obtained from patients and their families in the
context of a 3-y therapeutic relationship (28), which reduced the
risk of recall bias that exists in other forms of self-report or cross-
sectional research interviews. Moreover, trauma exposure and
psychosis may share some risk factors. Second, the usual short-
comings linked to the relatively small sample size should also be
considered. It precluded the stratification of patients according
to other variables, such as age at trauma exposure or the repe-
tition and length of exposure, which are known to modulate
symptom severity (5), and may have had an impact on the neu-
roanatomical results. Third, the cutoff value for GPx activity,
determined in a clinical trial involving a limited number of EPP
(n = 61) (26), should be refined and must be tested in larger
cohorts with prospective settings. Nevertheless, the discriminant
analysis indicated that stratification based on GPx activity is a
powerful approach to distinguish traumatized patients with dif-
ferent clinical and neuroanatomical profiles. Finally, we focused
on the hippocampus as it is the most frequently studied stress-
sensitive brain structure in the field of psychosis. The decrease
in hippocampal volume observed in EPP+CT compared with
EPP−NT was no more significant after correction by intracranial
volume (ICV), suggesting that such a decrease in the hippo-
campus volume is related to an overall reduction of the ICV in
traumatized patients (SI Appendix, Table S2), which, in turn, has
been linked to cognitive deficits (29). However, we detected no
effect on amygdala volume, suggesting that a specific interplay
between trauma and redox occurs in the hippocampus. This
could be explained by different maltreatment-sensitivity periods,
which peak at the age of 3–5 y for the hippocampus and at the
age 10–11 y for the amygdala (4). We previously showed in a
large sample that EPP are more likely to be exposed to trauma in
childhood than in adolescence (30). Nevertheless, our findings
may also be applicable to other brain regions that have not yet
been examined, and this possibility should be further explored.
CT may interact with the redox system through multiple

mechanisms. Environmental stress triggers the secretion of
stress-responsive hormones, including glucocorticoids (31),
through hypothalamic–pituitary–adrenal (HPA) axis activation.
Feedback loops then inhibit the system, favoring a return to

Fig. 4. Psychopathological and neurocognitive profiles. (A) Symptoms were
evaluated using the Positive and Negative Syndrome Scale in high- and low-
GPx EPP−NT and high- and low-GPx EPP+CT. Dot plots illustrate individual
scores, group mean, and SD for four subscales of the Wallwork et al. (51)
five-factor model. (B) Neurocognition was assessed using the MATRICS
Consensus Cognitive Battery. Dot plots illustrate individual standardized t
scores, group mean, and SD for the six factors evaluated. *P < 0.05.

Fig. 5. LDA was applied to the biochemical (GR activity, active Trx levels,
and oxidized Prx levels), neuroanatomical (right and left hippocampal vol-
ume), and clinical (MATRICS Consensus Cognitive Battery t scores, positive
symptoms, negative symptoms, disorganized symptoms, and depressive
factors) data. The scatterplot diagram illustrates individual values of the first
two canonical axes of the model, group means (+), and 95% confidence
interval (ellipse). The canonical axes 1 and 2 of the model explained 64.95%
and 28.69% of the variance, respectively. The four groups were significantly
separated according to the four MANOVA tests: Wilks’ Lambda, Lawley’s
trace, Roy’s largest root, and Pillai’s trace tests (P < 0.0001). EPP+CT, red; EPP−NT,
blue; high-GPx, dark color; low-GPx, light color.

12498 | www.pnas.org/cgi/doi/10.1073/pnas.1812821115 Alameda et al.
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homeostatic levels. However, this regulation is impaired if stress
exposure persists for months, as shown by human and primate
studies reporting alterations of HPA axis activation in children
exposed to severe life stress (31), and glucocorticoids induced by
acute stress may actually prime neuroinflammation to sub-
sequent challenges (32, 33). A meta-analysis showed that CT is
associated with a proinflammatory state in adulthood (34). Se-
vere life stress is also associated with brain oxidative stress (35).
Interestingly, Trx interacts directly with the DNA-binding do-
main of the glucocorticoid receptor under oxidative conditions
(36). In parallel, epigenetic changes may mediate the long-lasting
effect of CT and the interplay between early adversity and the
development of mental diseases (37). In the mouse, glucocorti-
coid treatment induced epigenetic modification of similar path-
ways in the blood and in the brain (38). This study thus supports
the use of whole blood to identify glucocorticoid-induced brain
changes. Conversion to psychosis is associated with epigenetic
changes in redox genes (9); therefore, it would be interesting to
examine at a genome-wide level whether the abnormalities that
we observe at a clinical, biological, and neuroanatomical levels in
traumatized EPP are related to changes in the methylation status
of genes implicated in the redox system.
Our data indicate that EPP who were exposed to trauma can be

split into two subgroups: one with a severe clinical phenotype and
oxidized state, reflected by high blood GPx activity, and one with
better functioning, characterized by a homeostatic regulation in-
volving the Trx/Prx antioxidant system. Further investigations on
mechanisms underlying the regulation between the GPx/GR and
Trx/Prx systems is warranted. In this regard, it is interesting to note
that Trx prevents the inhibition of the glucocorticoid receptor by
oxidative stress and preserves the expression of genes induced by
the glucocorticoid receptor, a mechanism thought to prevent the
overshoot of inflammation (36, 39). This coordination of the HPA
axis-mediated stress response and cellular redox system may not
be preserved in patients with impaired Trx regulation, leading to
more sustained activation of inflammation.
The interplay between inflammation and oxidative stress is well

established, and their reciprocal activation can lead to feed-forward
deleterious processes underlying brain alterations (40). Fast-spiking
parvalbumin interneurons are particularly vulnerable to redox im-
balance/oxidative stress due to their high frequency of discharge,
which implies enhanced oxidative metabolism activity (6, 41). Im-
pairments of these interneurons, present in both patients with
schizophrenia and models, play a critical role in neural syn-
chronization and cognitive deficits. Genetic and environmental
risks appear to converge on oxidative stress-induced parvalbumin
interneuron impairments (6). Therefore, trauma experience,
through overactivation of the HPA axis, may contribute to the ex-
acerbation of the vicious cycle between oxidative stress and neu-
roinflammation. In patients with impaired redox regulation who are
exposed to trauma, these mechanisms may act synergistically to
impair parvalbumin interneurons and lead to a severe phenotype.
Clinically, no consensus on the treatment of the sequelae of

trauma in psychotic patients has been reached. There is a need to
identify markers that may help clinicians to select candidates with
greater potential for improvement under specific therapeutic in-
terventions. We show that EPP+CT with low-GPx activity perform
better than the other groups in three neurocognitive tasks, with
scores that are within the normal range or above. These findings
may have some clinical implications. The preserved cognitive
functions in this group make them good candidates for trauma-
focused interventions (42). In contrast, traumatized patients with
high-GPx levels, who present cognitive functions in the lower
range of the mean, might be good candidates for cognitive re-
mediation therapy (CRT). Additionally, CRT has been found to
be more efficient in combination with other approaches (43).
Therefore, supplementing CRT with antioxidant compounds in
EPP with a disrupted redox homeostasis may help to improve their
cognition (26), and subsequently enhance their functional level.
Previous studies have already reported that EPP exposed to

trauma suffer from higher levels of positive symptoms than

nonexposed patients (5, 44). Our data show that this is true mostly
for patients displaying redox dysregulation. This highlights that the
GPx/GR redox system, together with trauma exposure status, is a
marker for a poorer psychopathological profile in EPP. Outcome
prediction with biomarkers has been the challenge of research in
psychiatry in the past 20 y. Our study brings an important con-
tribution to the field by highlighting a stratification of patients with
different psychopathological and neurocognitive profiles based on
a combination of demographic (trauma exposure status) and bi-
ological peripheral markers (GPx/GR and Trx/Prx systems) at the
beginning of their treatment. This biomarker-based classification
is a promising approach to refine specific treatments strategies in
the early stage of psychosis.

Materials and Methods
Participants. Patients were recruited from the Treatment andEarly Intervention
in Psychosis Program (TIPP-Lausanne), which offers 3 y of treatment to patients
aged 18–35 y (45). Inclusion criteria were (i) meeting the psychosis threshold as
defined by the Comprehensive Assessment of At-Risk Mental States (46), (ii) no
antipsychotic medication for >6 mo, (iii) no psychosis related to intoxication or
organic brain disease, and (iv) intelligence quotient ≥70. The diagnosis and the
date of the psychosis threshold were determined following expert consensus
between a senior psychiatrist and a senior psychologist who reviewed the
entire files of patients and based on the Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition (47). Duration of illness was defined as the
time that elapsed between reaching the psychosis threshold for the first time
and the time of assessment. All subjects who participated in this study pro-
vided informed written consent in accordance with our institutional guidelines
(study and consent protocols were approved by the Ethical Committee of
Lausanne University). Blood sampling, clinical assessment, and MRI imaging
(when applicable) were concomitant.

MRI Acquisition and Analysis. MRI sessions were performed on a 3-T scanner
(Siemens Medical Solutions) equipped with a 32-channel head coil. The
hippocampal volumes and ICV were automatically segmented using Free-
Surfer software, version 5.0.0 (48). Hippocampal volumes and ICV were an-
alyzed independently, without normalization. FreeSurfer has demonstrated
high reproducibility and consistency in hippocampus segmentation com-
pared with manual tracing (48) (more details are provided in SI Appendix).

Blood GPx Activity and Oxidized Prx and Trx Levels. GPx and GR enzymatic
activity in hemolysates was determined as previously described and expressed
in enzymatic units per gram of hemoglobin (23). Prx and oxidized Prx levels in
hemolysates were quantified by Western blot using the following primary
antibodies: anti-2Cys Prx mouse (1:1,000 dilution, ab16765; Abcam) and anti-
SO3-Prx (oxidized Prx) rabbit (1:2,000 dilution, ab16830; Abcam). Trx levels
were assessed in hemolysates by end-point measurement of Trx reducing
activity, using insulin as a substrate, with an adapted version of Arnér and
Holmgren’s (49) protocol (details are provided in SI Appendix).

Psychopathological and Neurocognitive Measures. Psychopathological and
neurocognitive measures were assessed by trained psychologists in face-to-
face interviews. The level of symptoms was evaluated with the 30 items of
the Positive and Negative Syndrome Scale (50). We used the Wallwork et al.
(51) five-factor model of psychosis to categorize the positive, negative, dis-
organized/concrete, excited, and depressed dimensions. Neuropsychological
assessments were administered with the MATRICS Consensus Cognitive
Battery (52), excluding the Mayer–Salovey–Caruso Emotional Intelligence
Test because the French translation had not been validated at the time of
the study. Thus, nine of 10 subtests were given, comprising six factors:
processing speed, sustained attention, working memory, verbal learning,
visual learning, and problem solving. Scores were adjusted for age and sex.

Assessment of History of Past Trauma. Patients were considered traumatized if
they were exposed to at least one experience of abuse (physical, sexual, or
emotional) or neglect (physical or emotional), as these experiences have been
shown to increase the risk for psychosis (3) and impact the psychopatho-
logical profile of EPP (3, 5). Patients were excluded if they were exposed to
trauma after the age of 16 y or were in the prodromal phase of the disease
when trauma occurred (also SI Appendix).

Statistical Analysis. Statistical analyses were performed using JMP software
(JMP IN, version 12.1; SAS). All used variables passed the Shapiro–Wilk test for
normal distribution. Using least squares analyses, we found no interaction
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between the variables of interest and age or sex, which were therefore not
included in our models. For correlation analysis between variables of in-
terest, we used the Pearson coefficient. For group comparisons, we per-
formed one-way ANOVA, followed by the Student’s t test. We used LDA as a
multivariate analysis to integrate the different variables into one model.
Differences between groups were tested using MANOVA tests (Wilks’
Lambda, Lawley’s trace, Roy’s largest root, and Pillai’s trace tests; details on
LDA are provided in SI Appendix). For all tests, we used 0.05 as the signifi-
cance threshold for the P value.
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